Extensions 1→N→G→Q→1 with N=C2 and Q=C423C4

Direct product G=N×Q with N=C2 and Q=C423C4
dρLabelID
C2×C423C432C2xC4^2:3C4128,857


Non-split extensions G=N.Q with N=C2 and Q=C423C4
extensionφ:Q→Aut NdρLabelID
C2.1(C423C4) = (C2×C42).C4central extension (φ=1)32C2.1(C4^2:3C4)128,51
C2.2(C423C4) = C42⋊C8central extension (φ=1)32C2.2(C4^2:3C4)128,56
C2.3(C423C4) = C24.6D4central extension (φ=1)32C2.3(C4^2:3C4)128,125
C2.4(C423C4) = C23.4D8central stem extension (φ=1)32C2.4(C4^2:3C4)128,76
C2.5(C423C4) = C23.Q16central stem extension (φ=1)32C2.5(C4^2:3C4)128,83
C2.6(C423C4) = C8⋊C45C4central stem extension (φ=1)168+C2.6(C4^2:3C4)128,144
C2.7(C423C4) = C8⋊C4.C4central stem extension (φ=1)328-C2.7(C4^2:3C4)128,145
C2.8(C423C4) = (C4×C8)⋊C4central stem extension (φ=1)324C2.8(C4^2:3C4)128,146

׿
×
𝔽